Прямоточный реактивный двигатель. пврд.

      Комментарии к записи Прямоточный реактивный двигатель. пврд. отключены

Прямоточный реактивный двигатель. пврд.

Реактивный двигатель – устройство, создающее требуемую для перемещения силу тяги, преобразовывая внутреннюю энергию горючего в кинетическую энергию реактивной струи рабочего тела.

Классы реактивных двигателей:

Все реактивные двигатели подразделяют на 2 класса:

  • Воздушно-реактивные – тепловые двигатели, применяющие энергию окисления воздуха, приобретаемого из воздуха. В этих двигателях рабочее тело представлено смесью продуктов горения с остальными элементами отобранного воздуха.
  • Ракетные – двигатели, каковые на борту содержат все нужные компоненты и могут трудиться кроме того в безвоздушном пространстве.

Прямоточный воздушно-реактивный двигатель – самый простой в классе ВРД по конструкции. Требуемое для работы устройства увеличение давления образуется методом торможения встречного воздушного потока.

Рабочий процесс ПВРД возможно коротко обрисовать следующим образом:

  • Во входное устройство двигателя поступает воздушное пространство со скоростью полета, кинетическая его энергия преобразуется во внутреннюю, давление и температура окружающей среды увеличиваются. На входе в камеру сгорания и на всей протяженности проточной части отмечается большое давление.
  • Нагревание сжатого воздуха в камере сгорания происходит методом окисления подаваемого воздуха, наряду с этим внутренняя энергия рабочего тела возрастает.
  • Потом поток сужается в сопле, рабочее тело достигает звуковой скорости, а снова при расширении – сверхзвуковой. Благодаря тому, что рабочее тело движется со скоростью, превышающей скорость встречного потока, в создается реактивная тяга.

pВ конструктивном замысле ПВРД есть предельно несложным устройством. В составе двигателя имеется камера сгорания, вовнутрь которой горючее поступает из топливных форсунок, а воздушное пространство – из диффузора. Камера сгорания заканчивается входом в сопло, которое есть суживающейся-расширяющимся.

Развитие разработки смесевого жёсткого горючего повлекло за собой применение этого горючего в ПВРД. В камере сгорания находится топливная шашка с центральным продольным каналом. Проходя по каналу, рабочее тело неспешно окисляет поверхность горючего и нагревается само.

Использование жёсткого горючего еще более упрощает состоящую конструкцию двигателя: топливная совокупность делается ненужной.

Смесевое горючее по собственному составу в ПВРД отличается от используемого в РДТТ. В случае если в ракетном двигателе солидную часть состава горючего занимает окислитель, то в ПВРД он употребляется в маленьких пропорциях для активирования процесса горения.

Наполнитель смесевого горючего ПВРД в основном складывается из мелкодисперсного порошка бериллия, магния либо алюминия. Их теплота окисления значительно превосходит теплоту сгорания углеводородного горючего. Как пример твердотопливного ПВРД возможно привести маршевый двигатель крылатой противокорабельной ракеты «П-270 Москит».

Тяга ПВРД зависит от скорости полета и определяется исходя из влияния нескольких факторов:

  • Чем больше показатель скорости полета, тем громадным будет расход воздуха, проходящего через тракт двигателя, соответственно, большее количество кислорода будет попадать в камеру сгорания, что увеличивает расход горючего, тепловую и механическую мощность мотора.
  • Чем больше расход воздуха через тракт двигателя, тем выше будет создаваемая мотором тяга. Но существует некоторый предел, расход воздуха через тракт мотора не имеет возможности возрастать неограниченно.
  • При возрастании скорости полета возрастает уровень давления в камере сгорания. Благодаря этого возрастает термический КПД двигателя.
  • Чем больше отличие между скоростью полета прохождения и скоростью аппарата реактивной струи, тем больше тяга двигателя.

Зависимость тяги прямоточного воздушно-реактивного двигателя от скорости полета возможно представить следующим образом: до того момента, пока скорость полета намного ниже скорости прохождения реактивной струи, тяга будет возрастать вместе с ростом скорости полета. В то время, когда скорость полета приближается к скорости реактивной струи, тяга начинает падать, миновав определенный максимум, при котором отмечается оптимальная скорость полета.

В зависимости от скорости полета выделяют такие категории ПВРД:

  • дозвуковые;
  • сверхзвуковые;
  • гиперзвуковые.

Любая из групп имеет собственные отличительные изюминки конструкции.

Дозвуковые ПВРД

Эта несколько двигателей предназначена для обеспечения полетов на скоростях, равных от 0,5 до 1,0 числа Маха. торможение и Сжатие воздуха в таких двигателях происходит в диффузоре – расширяющемся канале устройства на входе потока.

Эти двигатели имеют очень низкую эффективность. При полетах на скорости М= 0,5 уровень повышения давления в них равен 1,186, почему совершенный термический КПД для них – всего 4,76%, а вдруг еще и учитывать утраты в настоящем двигателе, эта величина будет приближаться к нулю. Это значит, что при полетах на скоростях M

Но кроме того на предельной скорости для дозвукового диапазона при М=1 уровень повышения давления равен 1,89, а совершенный термический коэффициент – всего 16, 7%. Эти показатели в 1,5 раза меньше, чем у поршневых двигателей внутреннего сгорания, и в 2 раза меньше, нежели у газотурбинных двигателей. Газотурбинные и поршневые двигатели к тому же действенны для применения при работе в стационарном положении.

Исходя из этого прямоточные дозвуковые двигатели в сравнении с другими авиационными двигателями были неконкурентоспособными и на данный момент серийно не выпускаются.

Сверхзвуковые ПВРД

Сверхзвуковые ПВРД вычислены на осуществление полетов в диапазоне скоростей 1 M 5.

Торможение газового сверхзвукового потока постоянно выполняется разрывно, наряду с этим образуется ударная волна, которая именуется скачком уплотнения. На дистанции ударной волны процесс сжатия газа не есть изоэнтропийным. Следовательно, наблюдаются утраты механической энергии, уровень повышения давления в нем меньший, нежели в изоэнтропийном ходе.

Чем замечательнее будет скачок уплотнения, тем больше изменится скорость потока на фронте, соответственно, больше утраты давления, время от времени достигающие 50%.

Чтобы минимизировать утраты давления, организуется сжатие не в одном, а нескольких скачках уплотнения с меньшей интенсивностью. По окончании каждого из таких скачков отмечается понижение скорости потока, которая остается сверхзвуковой. Это достигается, в случае если фронт скачков расположен под углом к направлению скорости потока.

Параметры потока в промежутках между скачками остаются постоянными.

В последнем скачке скорость достигает дозвукового показателя, сжатия воздуха и дальнейшие процессы торможения происходят непрерывно в канале диффузора.

В случае если входное устройство мотора находится в области невозмущенного потока (к примеру, впереди летательного аппарата на носовом окончании либо на достаточном отдалении от фюзеляжа на крыльевой консоли), оно выполняется асимметричным и комплектуется центральным телом – острым долгим «конусом», выходящим из обечайки. Центральное тело предназначено для во встречном воздушном потоке косых скачков уплотнения, каковые снабжают торможение и сжатие воздуха до момента его поступления в особый канал входного устройства. Представленные входные устройства стали называться устройств конического течения, воздушное пространство в них циркулирует, образуя коническую форму.

Центральное коническое тело возможно оснащено механическим приводом, что разрешает ему двигаться на протяжении оси двигателя и оптимизировать торможение потока воздуха на различных скоростях полета. Эти входные устройства именуются регулируемыми.

При фиксации двигателя под крылом либо снизу фюзеляжа, другими словами в области аэродинамического влияния элементов конструкции самолета, применяют входные устройства плоской формы двухмерного течения. Они не оснащаются центральным телом и имеют поперечное прямоугольное сечение.

Их еще именуют устройствами смешанного либо внутреннего сжатия, потому, что внешнее сжатие тут имеет место лишь при скачках уплотнения, образующихся у передней кромки крыла либо носового окончания летательного аппарата. Входные регулируемые устройства прямоугольного сечения способны поменять положение клиньев в канала.

В сверхзвуковом скоростном диапазоне ПВРД более действен, нежели в дозвуковом. К примеру, на скорости полета М=3 степень повышения давления образовывает 36,7, что приближается к показателю турбореактивных двигателей, а расчетный совершенный КПД достигает 64,3 %. На практике эти показатели меньшие, но на скоростях в диапазоне М=3-5 СПВРД по эффективности превосходят все существующие типы ВРД.

При температуре невозмущенного воздушного потока 273°K и скорости самолета М=5 температура рабочего заторможенного тела равна 1638°К, при скорости М=6 — 2238°К, а в настоящем полете с учетом действия силы и скачков уплотнения трения делается еще выше.

Предстоящее нагревание рабочего тела есть проблематичным из-за термической неустойчивости конструкционных материалов, входящих в состав двигателя.  Исходя из этого предельной для СПВРД считается скорость, равная М=5.

Гиперзвуковой прямоточный воздушно-реактивный двигатель

К категории гиперзвуковых ПВРД относится ПВРД, что трудится на скоростях более 5М. По состоянию на начало XXI века существование для того чтобы двигателя было лишь гипотетическим: не собрано ни единого примера, что бы прошел летные опробования и подтвердил актуальность и целесообразность его серийного выпуска.

На входе в устройство ГПВРД торможение воздуха выполняется лишь частично, и в течении остального такта перемещение рабочего тела есть сверхзвуковым. Большинство кинетической исходной энергии потока наряду с этим сохраняется, по окончании сжатия температура довольно низкая, что разрешает высвободить рабочему телу большое количество тепла. По окончании входного устройства проточная часть двигателя по всей собственной длине расширяется.

За счет сгорания горючего в сверхзвуковом потоке происходит нагрев рабочего тела, оно расширяется и ускоряется.

Данный тип двигателя рекомендован с целью проведения полетов в разреженной стратосфере. Теоретически таковой двигатель возможно применять на многоразовых носителях космических аппаратов.

Важной проблемой конструирования ГПВРД есть организация сгорания горючего в сверхзвуковом потоке.

В различных государствах начаты пара программ по созданию ГПВРД, все они находятся на стадии теоретических изысканий и предпроектных лабораторных изучений.

Где используются ПВРД

ПВРД не работает при нулевой скорости и низких скоростях полета. Летательный аппарат с таким двигателем требует установки на нем запасных приводов, в роли которых может выступать твердотопливный ракетный ускоритель либо самолет-носитель, с которого производится запуск аппарата с ПВРД.

По причине неэффективности ПВРД на малых скоростях его фактически неуместно применять на пилотируемых самолетах. Такие двигатели предпочтительно применять для беспилотных, крылатых, боевых ракет одноразового применения благодаря надежности, дешевизне и простоте. ПВРД кроме этого используют в летающих мишенях.

Борьбу по чертям ПВРД образовывает лишь ракетный двигатель.

Ядерный ПВРД

Во время холодной войны между США  и СССР создавались проекты прямоточных воздушных реактивных двигателей с ядерным реактором.

В таких агрегатах в качестве источника энергии выступала не химическая реакция сжигания горючего, а тепло, которое производил ядерный реактор, установленный вместо камеры сгорания. В таком ПВРД воздушное пространство, поступающий через входное устройство, попадает в активную область реактора, охлаждает конструкцию и сам нагревается до 3000 К. Потом происходит его истекание из сопла двигателя со скоростью, приближенной к скорости идеальных ракетных двигателей.

Ядерные ПВРД предназначались для установки в межконтинентальных крылатых ракетах, несущих ядерный заряд. Конструкторы в обеих государствах создали малогабаритные ядерные реакторы, каковые поместились в габариты крылатой ракеты.

В первой половине 60-ых годов двадцатого века в рамках программ изучения ядерных ПВРД Tory и Pluto совершили стационарные огневые опробования ядерного ПВРД Tory-IIC. Программа опробований была закрыта в июле 1964 г., летные опробования двигателя не проводили. Предположительной обстоятельством сворачивания программы имело возможность послужить совершенствование комплектации баллистических ракет ракетными химическими двигателями, каковые разрешали реализовать боевые задачи без привлечения ядерных  ПВРД. 

Термодинамика потока и воздушно-реактивный двигатель.

Увлекательные записи:

Похожие статьи, которые вам, наверника будут интересны: